3.80 \(\int \frac{\sin (c+d x)}{(a+a \sin (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=107 \[ -\frac{5 \tanh ^{-1}\left (\frac{\sqrt{a} \cos (c+d x)}{\sqrt{2} \sqrt{a \sin (c+d x)+a}}\right )}{16 \sqrt{2} a^{5/2} d}-\frac{5 \cos (c+d x)}{16 a d (a \sin (c+d x)+a)^{3/2}}+\frac{\cos (c+d x)}{4 d (a \sin (c+d x)+a)^{5/2}} \]

[Out]

(-5*ArcTanh[(Sqrt[a]*Cos[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sin[c + d*x]])])/(16*Sqrt[2]*a^(5/2)*d) + Cos[c + d*x]/
(4*d*(a + a*Sin[c + d*x])^(5/2)) - (5*Cos[c + d*x])/(16*a*d*(a + a*Sin[c + d*x])^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0738224, antiderivative size = 107, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.19, Rules used = {2750, 2650, 2649, 206} \[ -\frac{5 \tanh ^{-1}\left (\frac{\sqrt{a} \cos (c+d x)}{\sqrt{2} \sqrt{a \sin (c+d x)+a}}\right )}{16 \sqrt{2} a^{5/2} d}-\frac{5 \cos (c+d x)}{16 a d (a \sin (c+d x)+a)^{3/2}}+\frac{\cos (c+d x)}{4 d (a \sin (c+d x)+a)^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[Sin[c + d*x]/(a + a*Sin[c + d*x])^(5/2),x]

[Out]

(-5*ArcTanh[(Sqrt[a]*Cos[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sin[c + d*x]])])/(16*Sqrt[2]*a^(5/2)*d) + Cos[c + d*x]/
(4*d*(a + a*Sin[c + d*x])^(5/2)) - (5*Cos[c + d*x])/(16*a*d*(a + a*Sin[c + d*x])^(3/2))

Rule 2750

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((b
*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m)/(a*f*(2*m + 1)), x] + Dist[(a*d*m + b*c*(m + 1))/(a*b*(2*m + 1)
), Int[(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 -
b^2, 0] && LtQ[m, -2^(-1)]

Rule 2650

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Cos[c + d*x]*(a + b*Sin[c + d*x])^n)/(a*
d*(2*n + 1)), x] + Dist[(n + 1)/(a*(2*n + 1)), Int[(a + b*Sin[c + d*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d},
 x] && EqQ[a^2 - b^2, 0] && LtQ[n, -1] && IntegerQ[2*n]

Rule 2649

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, (b*C
os[c + d*x])/Sqrt[a + b*Sin[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sin (c+d x)}{(a+a \sin (c+d x))^{5/2}} \, dx &=\frac{\cos (c+d x)}{4 d (a+a \sin (c+d x))^{5/2}}+\frac{5 \int \frac{1}{(a+a \sin (c+d x))^{3/2}} \, dx}{8 a}\\ &=\frac{\cos (c+d x)}{4 d (a+a \sin (c+d x))^{5/2}}-\frac{5 \cos (c+d x)}{16 a d (a+a \sin (c+d x))^{3/2}}+\frac{5 \int \frac{1}{\sqrt{a+a \sin (c+d x)}} \, dx}{32 a^2}\\ &=\frac{\cos (c+d x)}{4 d (a+a \sin (c+d x))^{5/2}}-\frac{5 \cos (c+d x)}{16 a d (a+a \sin (c+d x))^{3/2}}-\frac{5 \operatorname{Subst}\left (\int \frac{1}{2 a-x^2} \, dx,x,\frac{a \cos (c+d x)}{\sqrt{a+a \sin (c+d x)}}\right )}{16 a^2 d}\\ &=-\frac{5 \tanh ^{-1}\left (\frac{\sqrt{a} \cos (c+d x)}{\sqrt{2} \sqrt{a+a \sin (c+d x)}}\right )}{16 \sqrt{2} a^{5/2} d}+\frac{\cos (c+d x)}{4 d (a+a \sin (c+d x))^{5/2}}-\frac{5 \cos (c+d x)}{16 a d (a+a \sin (c+d x))^{3/2}}\\ \end{align*}

Mathematica [C]  time = 0.183147, size = 196, normalized size = 1.83 \[ \frac{\left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right ) \left (-8 \sin \left (\frac{1}{2} (c+d x)\right )-5 \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )^3+10 \sin \left (\frac{1}{2} (c+d x)\right ) \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )^2+4 \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )+(5+5 i) (-1)^{3/4} \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )^4 \tanh ^{-1}\left (\left (\frac{1}{2}+\frac{i}{2}\right ) (-1)^{3/4} \left (\tan \left (\frac{1}{4} (c+d x)\right )-1\right )\right )\right )}{16 d (a (\sin (c+d x)+1))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sin[c + d*x]/(a + a*Sin[c + d*x])^(5/2),x]

[Out]

((Cos[(c + d*x)/2] + Sin[(c + d*x)/2])*(-8*Sin[(c + d*x)/2] + 4*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2]) + 10*Sin
[(c + d*x)/2]*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^2 - 5*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^3 + (5 + 5*I)*
(-1)^(3/4)*ArcTanh[(1/2 + I/2)*(-1)^(3/4)*(-1 + Tan[(c + d*x)/4])]*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^4))/(
16*d*(a*(1 + Sin[c + d*x]))^(5/2))

________________________________________________________________________________________

Maple [B]  time = 0.561, size = 193, normalized size = 1.8 \begin{align*} -{\frac{1}{ \left ( 32+32\,\sin \left ( dx+c \right ) \right ) \cos \left ( dx+c \right ) d} \left ( -5\,\sqrt{2}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{a-a\sin \left ( dx+c \right ) }\sqrt{2}}{\sqrt{a}}} \right ){a}^{3} \left ( \cos \left ( dx+c \right ) \right ) ^{2}+10\,\sqrt{2}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{a-a\sin \left ( dx+c \right ) }\sqrt{2}}{\sqrt{a}}} \right ){a}^{3}\sin \left ( dx+c \right ) -10\, \left ( a-a\sin \left ( dx+c \right ) \right ) ^{3/2}{a}^{3/2}+12\,\sqrt{a-a\sin \left ( dx+c \right ) }{a}^{5/2}+10\,\sqrt{2}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{a-a\sin \left ( dx+c \right ) }\sqrt{2}}{\sqrt{a}}} \right ){a}^{3} \right ) \sqrt{-a \left ( \sin \left ( dx+c \right ) -1 \right ) }{a}^{-{\frac{11}{2}}}{\frac{1}{\sqrt{a+a\sin \left ( dx+c \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(d*x+c)/(a+a*sin(d*x+c))^(5/2),x)

[Out]

-1/32*(-5*2^(1/2)*arctanh(1/2*(a-a*sin(d*x+c))^(1/2)*2^(1/2)/a^(1/2))*a^3*cos(d*x+c)^2+10*2^(1/2)*arctanh(1/2*
(a-a*sin(d*x+c))^(1/2)*2^(1/2)/a^(1/2))*a^3*sin(d*x+c)-10*(a-a*sin(d*x+c))^(3/2)*a^(3/2)+12*(a-a*sin(d*x+c))^(
1/2)*a^(5/2)+10*2^(1/2)*arctanh(1/2*(a-a*sin(d*x+c))^(1/2)*2^(1/2)/a^(1/2))*a^3)*(-a*(sin(d*x+c)-1))^(1/2)/a^(
11/2)/(1+sin(d*x+c))/cos(d*x+c)/(a+a*sin(d*x+c))^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sin \left (d x + c\right )}{{\left (a \sin \left (d x + c\right ) + a\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)/(a+a*sin(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate(sin(d*x + c)/(a*sin(d*x + c) + a)^(5/2), x)

________________________________________________________________________________________

Fricas [B]  time = 1.81739, size = 848, normalized size = 7.93 \begin{align*} \frac{5 \, \sqrt{2}{\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} +{\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right ) - 4\right )} \sin \left (d x + c\right ) - 2 \, \cos \left (d x + c\right ) - 4\right )} \sqrt{a} \log \left (-\frac{a \cos \left (d x + c\right )^{2} - 2 \, \sqrt{2} \sqrt{a \sin \left (d x + c\right ) + a} \sqrt{a}{\left (\cos \left (d x + c\right ) - \sin \left (d x + c\right ) + 1\right )} + 3 \, a \cos \left (d x + c\right ) -{\left (a \cos \left (d x + c\right ) - 2 \, a\right )} \sin \left (d x + c\right ) + 2 \, a}{\cos \left (d x + c\right )^{2} -{\left (\cos \left (d x + c\right ) + 2\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 2}\right ) + 4 \,{\left (5 \, \cos \left (d x + c\right )^{2} +{\left (5 \, \cos \left (d x + c\right ) + 4\right )} \sin \left (d x + c\right ) + \cos \left (d x + c\right ) - 4\right )} \sqrt{a \sin \left (d x + c\right ) + a}}{64 \,{\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} - 2 \, a^{3} d \cos \left (d x + c\right ) - 4 \, a^{3} d +{\left (a^{3} d \cos \left (d x + c\right )^{2} - 2 \, a^{3} d \cos \left (d x + c\right ) - 4 \, a^{3} d\right )} \sin \left (d x + c\right )\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)/(a+a*sin(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

1/64*(5*sqrt(2)*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + (cos(d*x + c)^2 - 2*cos(d*x + c) - 4)*sin(d*x + c) - 2*co
s(d*x + c) - 4)*sqrt(a)*log(-(a*cos(d*x + c)^2 - 2*sqrt(2)*sqrt(a*sin(d*x + c) + a)*sqrt(a)*(cos(d*x + c) - si
n(d*x + c) + 1) + 3*a*cos(d*x + c) - (a*cos(d*x + c) - 2*a)*sin(d*x + c) + 2*a)/(cos(d*x + c)^2 - (cos(d*x + c
) + 2)*sin(d*x + c) - cos(d*x + c) - 2)) + 4*(5*cos(d*x + c)^2 + (5*cos(d*x + c) + 4)*sin(d*x + c) + cos(d*x +
 c) - 4)*sqrt(a*sin(d*x + c) + a))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 - 2*a^3*d*cos(d*x + c) - 4*a
^3*d + (a^3*d*cos(d*x + c)^2 - 2*a^3*d*cos(d*x + c) - 4*a^3*d)*sin(d*x + c))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sin{\left (c + d x \right )}}{\left (a \left (\sin{\left (c + d x \right )} + 1\right )\right )^{\frac{5}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)/(a+a*sin(d*x+c))**(5/2),x)

[Out]

Integral(sin(c + d*x)/(a*(sin(c + d*x) + 1))**(5/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \mathit{sage}_{2} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)/(a+a*sin(d*x+c))^(5/2),x, algorithm="giac")

[Out]

sage2